Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Pediatr Res ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480856

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia (BPD), a common morbidity among very preterm infants, is associated with chronic disease and neurodevelopmental impairments. A hypothesized mechanism for these outcomes lies in altered glucocorticoid (GC) activity. We hypothesized that BPD and its treatments may result in epigenetic differences in the hypothalamic-pituitary-adrenal (HPA) axis, which is modulated by GC, and could be ascertained using an established GC risk score and DNA methylation (DNAm) of HPA axis genes. METHODS: DNAm was quantified from buccal tissue (ECHO-NOVI) and from neonatal blood spots (ELGAN ECHO) via the EPIC microarray. Prenatal maternal characteristics, pregnancy complication, and neonatal medical complication data were collected from medical record review and maternal interviews. RESULTS: The GC score was not associated with steroid exposure or BPD. However, six HPA genes involved in stress response regulation demonstrated differential methylation with antenatal steroid exposure; two CpGs within FKBP5 and POMC were differentially methylated with BPD severity. These findings were sex-specific in both cohorts; males had greater magnitude of differential methylation within these genes. CONCLUSIONS: These findings suggest that BPD severity and antenatal steroids are associated with DNAm at some HPA genes in very preterm infants and the effects appear to be sex-, tissue-, and age-specific. IMPACT: This study addresses bronchopulmonary dysplasia (BPD), an important health outcome among preterm neonates, and interrogates a commonly studied pathway, the hypothalamic-pituitary-adrenal (HPA) axis. The combination of BPD, the HPA axis, and epigenetic markers has not been previously reported. In this study, we found that BPD itself was not associated with epigenetic responses in the HPA axis in infants born very preterm; however, antenatal treatment with steroids was associated with epigenetic responses.

2.
Epigenetics ; 19(1): 2326869, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38507502

RESUMEN

5-hydroxymethylcystosine (5hmC), is an intermediate product in the DNA demethylation pathway, but may act as a functional epigenetic modification. We have conducted the largest study of site-specific 5hmC in placenta to date using parallel bisulphite and oxidative bisulphite modification with array-based assessment. Incorporating parallel RNA-sequencing data allowed us to assess associations between 5hmC and gene expression, using expression quantitative trait hydroxymethylation (eQTHM) analysis. We identified ~ 47,000 loci with consistently elevated (systematic) 5hmC proportions. Systematic 5hmC was significantly depleted (p < 0.0001) at CpG islands (CGI), and enriched (p < 0.0001) in 'open sea' regions (CpG >4 kb from CGI). 5hmC was most and least abundant at CpGs in enhancers and active transcription start sites (TSS), respectively (p < 0.05). We identified 499 significant (empirical-p <0.05) eQTHMs within 1 MB of the assayed gene. At most (75.4%) eQTHMs, the proportion of 5hmC was positively correlated with transcript abundance. eQTHMs were significantly enriched among enhancer CpGs and depleted among CpGs in active TSS (p < 0.05 for both). Finally, we identified 107 differentially hydroxymethylated regions (DHMRs, p < 0.05) across 100 genes. Our study provides insight into placental distribution of 5hmC, and sheds light on the functional capacity of this epigenetic modification in placenta.


Asunto(s)
5-Metilcitosina/análogos & derivados , Metilación de ADN , Placenta , Sulfitos , Femenino , Embarazo , Humanos , Placenta/metabolismo , 5-Metilcitosina/metabolismo , Epigénesis Genética , Expresión Génica
3.
Environ Pollut ; 349: 123873, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554839

RESUMEN

Prenatal exposure to pyrethroids is linked to adverse health effects in early life and proper placental function is critical to fetal development. This study explores the impact of prenatal pyrethroid exposure, as well as factors impacting exposure and effect, on the placental transcriptome, to understand pyrethroid exposures' relationship to placental function. The study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE) recruited pregnant farm-working women from two agricultural districts in the Chiang Mai province of Thailand between 2017 and 2019. This cohort was predominantly exposed to cypermethrin (type II), alongside pyrethroids such as cyfluthrin (type II) and permethrin (type I). In 253 participants, maternal urinary pyrethroid metabolites, 3-phenoxybenzoic acid (PBA), cis-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (CDCCA), and trans-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (TDCCA) were measured in early, middle, and late pregnancy and adjusted for urinary creatinine. The placental transcriptome was analyzed using RNA-Seq. Using generalized linear regression, we identified differentially expressed genes (DEGs) associated with the sum of each metabolite across pregnancy, as well as those associated with location of residence and season of birth. Pathway and upstream transcription factor analyses were performed to examine potential mechanisms associated with DEGs. Notably, TDCCA and CDCCA levels peaked in late pregnancy, with significant regional differences, particularly higher levels in the Fang region. Placental gene expression analysis showed no DEGs associated with individual metabolites at FDR<0.05. However, 251 DEGs by location, implicating immune response and oxidative phosphorylation pathways, were identified, while season of birth was associated with 2585 DEGs, over-represented in fibrosis signaling and metabolism pathways. Finally, transcription factor analysis identified 226 and 282 transcription factors associated with location and season, respectively, related to cell proliferation, differentiation, and the immune system. These alterations may have significant implications for fetal development and other pathologic processes, highlighting the importance of monitoring environmental exposures during pregnancy.


Asunto(s)
Exposición Materna , Placenta , Piretrinas , Estaciones del Año , Transcriptoma , Femenino , Humanos , Embarazo , Tailandia , Piretrinas/metabolismo , Placenta/metabolismo , Adulto , Exposición Materna/estadística & datos numéricos , Agricultores , Granjas , Adulto Joven , Insecticidas/metabolismo , Pueblos del Sudeste Asiático
4.
Autism Res ; 16(5): 918-934, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36938998

RESUMEN

Children born preterm are at heightened risk of neurodevelopmental impairments, including Autism Spectrum Disorder (ASD). The placenta is a key regulator of neurodevelopmental processes, though the precise underlying molecular mechanisms remain unclear. Here, we employed a multi-omic approach to identify placental transcriptomic and epigenetic modifications related to ASD diagnosis at age 10, among children born preterm. Working with the extremely low gestational age (ELGAN) cohort, we hypothesized that a pro-inflammatory placental environment would be predictive of ASD diagnosis at age 10. Placental messenger RNA (mRNA) expression, CpG methylation, and microRNA (miRNA) expression were compared among 368 ELGANs (28 children diagnosed with ASD and 340 children without ASD). A total of 111 genes displayed expression levels in the placenta that were associated with ASD. Within these ASD-associated genes is an ASD regulatory complex comprising key genes that predicted ASD case status. Genes with expression that predicted ASD case status included Ewing Sarcoma Breakpoint Region 1 (EWSR1) (OR: 6.57 (95% CI: 2.34, 23.58)) and Bromodomain Adjacent To Zinc Finger Domain 2A (BAZ2A) (OR: 0.12 (95% CI: 0.03, 0.35)). Moreover, of the 111 ASD-associated genes, nine (8.1%) displayed associations with CpG methylation levels, while 14 (12.6%) displayed associations with miRNA expression levels. Among these, LRR Binding FLII Interacting Protein 1 (LRRFIP1) was identified as being under the control of both CpG methylation and miRNAs, displaying an OR of 0.42 (95% CI: 0.17, 0.95). This gene, as well as others identified as having functional epimutations, plays a critical role in immune system regulation and inflammatory response. In summary, a multi-omic approach was used to identify functional epimutations in the placenta that are associated with the development of ASD in children born preterm, highlighting future avenues for intervention.


Asunto(s)
Trastorno del Espectro Autista , MicroARNs , Recién Nacido , Humanos , Niño , Embarazo , Femenino , Trastorno del Espectro Autista/diagnóstico , Placenta/metabolismo , Multiómica , Epigénesis Genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo
5.
medRxiv ; 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36945560

RESUMEN

Increasing evidence supports the role of placenta in neurodevelopment and potentially, in the later onset of neuropsychiatric disorders. Recently, methylation quantitative trait loci (mQTL) and interaction QTL (iQTL) maps have proven useful to understand SNP-genome wide association study (GWAS) relationships, otherwise missed by conventional expression QTLs. In this context, we propose that part of the genetic predisposition to complex neuropsychiatric disorders acts through placental DNA methylation (DNAm). We constructed the first public placental cis-mQTL database including nearly eight million mQTLs calculated in 368 fetal placenta DNA samples from the INMA project, ran cell type- and gestational age-imQTL models and combined those data with the summary statistics of the largest GWAS on 10 neuropsychiatric disorders using Summary-based Mendelian Randomization (SMR) and colocalization. Finally, we evaluated the influence of the DNAm sites identified on placental gene expression in the RICHS cohort. We found that placental cis-mQTLs are highly enriched in placenta-specific active chromatin regions, and useful to map the etiology of neuropsychiatric disorders at prenatal stages. Specifically, part of the genetic burden for schizophrenia, bipolar disorder and major depressive disorder confers risk through placental DNAm. The potential causality of several of the observed associations is reinforced by secondary association signals identified in conditional analyses, regional pleiotropic methylation signals associated to the same disorder, and cell type-imQTLs, additionally associated to the expression levels of relevant immune genes in placenta. In conclusion, the genetic risk of several neuropsychiatric disorders could operate, at least in part, through DNAm and associated gene expression in placenta.

6.
Epigenetics ; 18(1): 2179726, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36840948

RESUMEN

The placenta undergoes many changes throughout gestation to support the evolving needs of the foetus. There is also a growing appreciation that male and female foetuses develop differently in utero, with unique epigenetic changes in placental tissue. Here, we report meta-analysed sex-specific associations between gestational age and placental DNA methylation from four cohorts in the National Institutes of Health (NIH) Environmental influences on Child Health Outcomes (ECHO) Programme (355 females/419 males, gestational ages 23-42 weeks). We identified 407 cytosine-guanine dinucleotides (CpGs) in females and 794 in males where placental methylation levels were associated with gestational age. After cell-type adjustment, 55 CpGs in females and 826 in males were significant. These were enriched for biological processes critical to the immune system in females and transmembrane transport in males. Our findings are distinct between the sexes: in females, associations with gestational age are largely explained by differences in placental cellular composition, whereas in males, gestational age is directly associated with numerous alterations in methylation levels.


Asunto(s)
Metilación de ADN , Placenta , Niño , Embarazo , Humanos , Masculino , Femenino , Lactante , Placenta/metabolismo , Edad Gestacional , Epigénesis Genética , Caracteres Sexuales
7.
Pediatr Res ; 94(1): 341-348, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36380070

RESUMEN

BACKGROUND: Poor placental function is a common cause of intrauterine growth restriction, which in turn is associated with increased risks of adverse health outcomes. Our prior work suggests that birthweight and childhood obesity-associated genetic variants functionally impact placental function and that placental microRNA are associated with birthweight. To address the influence of the placenta beyond birth, we assessed the relationship between placental microRNAs and early childhood growth. METHODS: Using the SITAR package, we generated two parameters that describe individual weight trajectories of children (0-5 years) in the New Hampshire Birth Cohort Study (NHBCS, n = 238). Using negative binomial generalized linear models, we identified placental microRNAs that relate to growth parameters (FDR < 0.1), while accounting for sex, gestational age at birth, and maternal parity. RESULTS: Genes targeted by the six growth trajectory-associated microRNAs are enriched (FDR < 0.05) in growth factor signaling (TGF/beta: miR-876; EGF/R: miR-155, Let-7c; FGF/R: miR-155; IGF/R: Let-7c, miR-155), calmodulin signaling (miR-216a), and NOTCH signaling (miR-629). CONCLUSIONS: Growth-trajectory microRNAs target pathways affecting placental proliferation, differentiation and function. Our results suggest a role for microRNAs in regulating placental cellular dynamics and supports the Developmental Origins of Health and Disease hypothesis that fetal environment can have impacts beyond birth. IMPACT: We found that growth trajectory associated placenta microRNAs target genes involved in signaling pathways central to the formation, maintenance and function of placenta; suggesting that placental cellular dynamics remain critical to infant growth to term and are under the control of microRNAs. Our results contribute to the existing body of research suggesting that the placenta plays a key role in programming health in the offspring. This is the first study to relate molecular patterns in placenta, specifically microRNAs, to early childhood growth trajectory.


Asunto(s)
MicroARNs , Obesidad Infantil , Recién Nacido , Lactante , Humanos , Preescolar , Embarazo , Femenino , Niño , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Peso al Nacer , Estudios de Cohortes , Obesidad Infantil/metabolismo
8.
Pediatr Res ; 93(5): 1410-1418, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35906307

RESUMEN

BACKGROUND: Prenatal cadmium (Cd) exposure has been implicated in both placental toxicity and adverse neurobehavioral outcomes. Placental microRNAs (miRNAs) may function to developmentally program adverse pregnancy and newborn health outcomes in response to gestational Cd exposure. METHODS: In a subset of the Rhode Island Child Health Study (RICHS, n = 115) and the New Hampshire Birth Cohort Study (NHBCS, = 281), we used small RNA sequencing and trace metal analysis to identify Cd-associated expression of placental miRNAs using negative binomial generalized linear models. We predicted mRNAs targeted by Cd-associated miRNAs and relate them to neurobehavioral outcomes at birth through the integration of transcriptomic data and summary scores from the NICU Network Neurobehavioral Scale (NNNS). RESULTS: Placental Cd concentrations are significantly associated with the expression level of five placental miRNAs in NHBCS, with similar effect sizes in RICHS. These miRNA target genes overrepresented in nervous system development, and their expression is correlated with NNNS metrics suggestive of atypical neurobehavioral outcomes at birth. CONCLUSIONS: Gestational Cd exposure is associated with the expression of placental miRNAs. Predicted targets of these miRNAs are involved in nervous system development and may also regulate placental physiology, allowing their dysregulation to modify developmental programming of early life health outcomes. IMPACT: This research aims to address the poor understanding of the molecular mechanisms governing adverse pregnancy and newborn health outcomes in response to Gestational cadmium (Cd) exposure. Our results outline a robust relationship between Cd-associated placental microRNA expression and NICU Network Neurobehavioral Scales (NNNS) at birth indicative of atypical neurobehavior. This study utilized healthy mother-infant cohorts to describe the role of Cd-associated dysregulation of placental microRNAs as a potential mechanism by which adverse neurobehavioral outcomes are developmentally programmed.


Asunto(s)
MicroARNs , Placenta , Recién Nacido , Niño , Humanos , Embarazo , Femenino , Placenta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cadmio , Estudios de Cohortes , Parto
9.
J Dev Orig Health Dis ; 14(1): 132-139, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35815737

RESUMEN

In the United States, cardiovascular disease is the leading cause of death and the rate of maternal mortality remains among the highest of any industrialized nation. Maternal cardiometabolic health throughout gestation and postpartum is representative of placental health and physiology. Both proper placental functionality and placental microRNA expression are essential to successful pregnancy outcomes, and both are highly sensitive to genetic and environmental sources of variation. Placental pathologies, such as preeclampsia, are associated with maternal cardiovascular health but may also contribute to the developmental programming of chronic disease in offspring. However, the role of more subtle alterations to placental function and microRNA expression in this developmental programming remains poorly understood. We performed small RNA sequencing to investigate microRNA in placentae from the Rhode Island Child Health Study (n = 230). MicroRNA counts were modeled on maternal family history of cardiovascular disease using negative binomial generalized linear models. MicroRNAs were considered to be differentially expressed at a false discovery rate (FDR) less than 0.10. Parallel mRNA sequencing data and bioinformatic target prediction software were then used to identify potential mRNA targets of differentially expressed microRNAs. Nine differentially expressed microRNAs were identified (FDR < 0.1). Bioinformatic target prediction revealed 66 potential mRNA targets of these microRNAs, many of which are implicated in TGFß signaling pathway but also in pathways involving cellular metabolism and immunomodulation. A robust association exists between familial cardiovascular disease and placental microRNA expression which may be implicated in both placental insufficiencies and the developmental programming of chronic disease.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Placenta , Femenino , Humanos , Embarazo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Resultado del Embarazo , ARN Mensajero/metabolismo
10.
Sci Rep ; 12(1): 22576, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585414

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) for treatment of prenatal maternal depression have been associated with neonatal neurobehavioral disturbances, though the molecular mechanisms remain poorly understood.  In utero exposure to SSRIs may affect DNA methylation (DNAme) in the human placenta, an epigenetic mark that is established during development and is associated with gene expression. Chorionic villus samples from 64 human placentas were profiled with the Illumina MethylationEPIC BeadChip; clinical assessments of maternal mood and SSRI treatment records were collected at multiple time points during pregnancy. Case distribution was 20 SSRI-exposed cases and 44 SSRI non-exposed cases. Maternal depression was defined using a mean maternal Hamilton Depression score > 8 to indicate symptomatic depressed mood ("maternally-depressed"), and we further classified cases into SSRI-exposed, maternally-depressed (n = 14); SSRI-exposed, not maternally-depressed (n = 6); SSRI non-exposed, maternally-depressed (n = 20); and SSRI non-exposed, not maternally-depressed (n = 24). For replication, Illumina 450K DNAme profiles were obtained from 34 additional cases from an independent cohort (n = 17 SSRI-exposed, n = 17 SSRI non-exposed). No CpGs were differentially methylated at FDR < 0.05 comparing SSRI-exposed to non-exposed placentas, in a model adjusted for mean maternal Hamilton Depression score, or in a model restricted to maternally-depressed cases with and without SSRI exposure. However, at a relaxed threshold of FDR < 0.25, five CpGs were differentially methylated (|Δß| > 0.03) by SSRI exposure status. Four were covered by the replication cohort measured by the 450K array, but none replicated. No CpGs were differentially methylated (FDR < 0.25) comparing maternally depressed to not depressed cases. In sex-stratified analyses for SSRI-exposed versus non-exposed cases (females n = 31; males n = 33), three additional CpGs in females, but none in males, were differentially methylated at the relaxed FDR < 0.25 cut-off. We did not observe large-scale alterations of DNAme in placentas exposed to maternal SSRI treatment, as compared to placentas with no SSRI exposure. We also found no evidence for altered DNAme in maternal depression-exposed versus depression non-exposed placentas. This novel work in a prospectively-recruited cohort with clinician-ascertained SSRI exposure and mood assessments would benefit from future replication.


Asunto(s)
Complicaciones del Embarazo , Efectos Tardíos de la Exposición Prenatal , Masculino , Recién Nacido , Embarazo , Humanos , Femenino , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Placenta/metabolismo , Metilación de ADN , Efectos Tardíos de la Exposición Prenatal/metabolismo , Afecto , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismo
11.
Epigenetics ; 17(13): 2404-2420, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36148884

RESUMEN

Prenatal lead (Pb) exposure is associated with adverse developmental outcomes and to epigenetic alterations such as DNA methylation and hydroxymethylation in animal models and in newborn blood. Given the importance of the placenta in foetal development, we sought to examine how prenatal Pb exposure was associated with differential placental DNA methylation and hydroxymethylation and to identify affected biological pathways linked to developmental outcomes. Maternal (n = 167) and infant (n = 172) toenail and placenta (n = 115) samples for prenatal Pb exposure were obtained from participants in a US birth cohort, and methylation and hydroxymethylation data were quantified using the Illumina Infinium MethylationEPIC BeadChip. An epigenome-wide association study was applied to identify differential methylation and hydroxymethylation associated with Pb exposure. Biological functions of the Pb-associated genes were determined by overrepresentation analysis through ConsensusPathDB. Prenatal Pb quantified from maternal toenail, infant toenail, and placenta was associated with 480, 27, and 2 differentially methylated sites (q < 0.05), respectively, with both increases and decreases associated with exposure. Alternatively, we identified 2, 1, and 14 differentially hydroxymethylated site(s) associated with maternal toenail, infant toenail, and placental Pb, respectively, with most showing increases in hydroxymethylation with exposure. Significantly overrepresented pathways amongst genes associated with differential methylation and hydroxymethylation (q < 0.10) included mechanisms pertaining to nervous system and organ development, calcium transport and regulation, and signalling activities. Our results suggest that both methylation and hydroxymethylation in the placenta can be variable based on Pb exposure and that the pathways impacted could affect placental function.


Asunto(s)
Metilación de ADN , Placenta , Recién Nacido , Lactante , Humanos , Femenino , Embarazo , Placenta/metabolismo , Plomo/toxicidad , Plomo/metabolismo , Epigénesis Genética , Epigenómica , Exposición Materna/efectos adversos
12.
Environ Epidemiol ; 6(1): e194, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35169672

RESUMEN

BACKGROUND: Prenatal exposure to metals can affect the developing fetus and negatively impact neurobehavior. The associations between individual metals and neurodevelopment have been examined, but little work has explored the potentially detrimental neurodevelopmental outcomes associated with the combined impact of coexisting metals. The objective of this study is to evaluate prenatal metal exposure mixtures in the placenta to elucidate the link between their combined effects on newborn neurobehavior. METHOD: This study included 192 infants with available placental metal and NICU Network Neurobehavioral Scale data at 24 hours-72 hours age. Eight essential and nonessential metals (cadmium, cobalt, copper, iron, manganese, molybdenum, selenium, zinc) detected in more than 80% of samples were tested for associations with atypical neurobehavior indicated by NICU Network Neurobehavioral Scale using logistic regression and in a quantile g-computation analysis to evaluate the joint association between placental metal mixture and neurobehavioral profiles. RESULTS: Individually, a doubling of placental cadmium concentrations was associated with an increased likelihood of being in the atypical neurobehavioral profile (OR = 2.39; 95% CI = 1.05 to 5.71). In the mixture analysis, joint effects of a quartile increase in exposure to all metals was associated with 3-fold increased odds of newborns being assigned to the atypical profile (OR = 3.23; 95% CI = 0.92 to 11.36), with cadmium having the largest weight in the mixture effect. CONCLUSIONS: Prenatal exposure to relatively low levels of a mixture of placental metals was associated with adverse newborn neurobehavior. Examining prenatal metal exposures as a mixture is important for understanding the harmful effects of concomitant exposures in the vulnerable populations.

13.
Environ Res ; 204(Pt A): 111939, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34461121

RESUMEN

BACKGROUND: Prenatal exposure to heavy metals has been linked to a variety of adverse outcomes in newborn health and later life. Toxic metals such as cadmium (Cd), manganese (Mn) and lead (Pb) have been implicated to negatively affect newborn neurobehavior. Placental levels of these metals may provide additional understandings on the link between prenatal toxic metal exposures and neurobehavioral performances in newborns. OBJECTIVE: To evaluate associations between placental concentrations of toxic metals and newborn neurobehavioral performance indicated through the NICU Network Neurobehavioral Scales (NNNS) latent profiles. METHOD: In the Rhode Island Child Health Study cohort (n = 625), newborn neurobehavioral performance was assessed with NNNS, and a latent profile analysis was used to define five discrete neurobehavioral profiles based on summary scales. Using multinomial logistic regression, we determined whether increased levels of placental toxic metals Cd, Mn and Pb associated with newborns assigned to the profile demonstrating atypical neurobehavioral performances. RESULTS: Every doubling in placenta Cd concentration was associated with increased odds of newborns belonging to the atypical neurobehavior profile (OR: 2.72, 95% CI [1.09, 6.79]). Detectable placental Pb also demonstrated an increased odds of newborns assignment to the atypical profile (OR: 3.71, 95% CI [0.97, 13.96]) compared to being in the typical neurobehavioral profile. CONCLUSIONS: Toxic metals Cd and Pb measured in placental tissue may adversely impact newborn neurobehavior. Utilizing the placenta as a prenatal toxic metal exposure biomarker is useful in elucidating the associated impacts of toxic metals on newborn health.


Asunto(s)
Unidades de Cuidado Intensivo Neonatal , Metales Pesados , Niño , Salud Infantil , Femenino , Humanos , Recién Nacido , Metales Pesados/toxicidad , Placenta , Embarazo , Rhode Island
14.
Epigenetics ; 17(10): 1234-1245, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34784848

RESUMEN

Selenium is an important micronutrient for foetal development. MicroRNAs play an important role in the function of the placenta, in communication between the placenta and maternal systems, and their expression can be altered through environmental and nutritional cues. To investigate the associations between placental selenium concentration and microRNA expression in the placenta, our observational study included 393 mother-child pairs from the New Hampshire Birth Cohort Study (NHBCS) and the Rhode Island Child Health Study (RICHS). Placental selenium concentrations were quantified using inductively coupled plasma mass spectrometry, and microRNA transcripts were measured using RNA-seq. We fit negative binomial additive models for assessing the association between selenium and microRNAs. We used the microRNA Data Integration Portal (mirDIP) to predict the target mRNAs of the differentially expressed microRNAs and verified the relationships between miRNA and mRNA targets in a subset of samples using existing whole transcriptome data (N = 199). We identified a non-monotonic association between selenium concentration and the expression of miR-216a-5p/miR-217-5p cluster (effective degrees of freedom, EDF = 2.44 and 2.08; FDR = 3.08 × 10-5) in placenta. Thirty putative target mRNAs of miR-216a-5p and/or miR-217-5p were identified computationally and empirically and were enriched in selenium metabolic pathways (driven by selenoprotein coding genes, TXNRD2 and SELENON). Our findings suggest that selenium influences placental microRNA expression. Further, miR-216a-5p and its putative target mRNAs could be the potential mechanistic targets of the health effect of selenium.


Asunto(s)
MicroARNs , Selenio , Cohorte de Nacimiento , Estudios de Cohortes , Metilación de ADN , Femenino , Humanos , MicroARNs/metabolismo , Micronutrientes/metabolismo , Placenta/metabolismo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Selenio/metabolismo
15.
PLoS One ; 16(8): e0255296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34370755

RESUMEN

Chronodisruption has been largely overlooked as a developmental exposure. The placenta, a conduit between the maternal and fetal environments, may relay circadian cues to the fetus. We have previously shown that developmental chronodisruption causes visual impairment and increased retinal microglial and macrophage marker expression. Here, we investigated the impacts of environmental chronodisruption on fetal and placental outcomes in a C57BL/6J mouse (Mus musculus) model. Developmental chronodisruption had no effect on embryo count, placental weight, or fetal sex ratio. When measured with RNAseq, mice exposed to developmental chronodisruption (CD) had differential placental expression of several transcripts including Serpinf1, which encodes pigment epithelium-derived factor (PEDF). Immunofluorescence of microglia/macrophage markers, Iba1 and CD11b, also revealed significant upregulation of immune cell markers in CD-exposed placenta. Our results suggest that in utero chronodisruption enhances placental immune cell expression, potentially programming a pro-inflammatory tissue environment.


Asunto(s)
Placenta , Animales , Embrión de Mamíferos , Femenino , Macrófagos , Ratones , Microglía , Embarazo
16.
Epigenetics ; 16(7): 770-782, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33016211

RESUMEN

MicroRNAs are non-coding RNAs that regulate gene expression post-transcriptionally. In the placenta, the master regulator of foetal growth and development, microRNAs shape the basic processes of trophoblast biology and specific microRNA have been associated with foetal growth. To comprehensively assess the role of microRNAs in placental function and foetal development, we have performed small RNA sequencing to profile placental microRNAs from two independent mother-infant cohorts: the Rhode Island Child Health Study (n = 225) and the New Hampshire Birth Cohort Study (n = 317). We modelled microRNA counts on infant birthweight percentile (BWP) in each cohort, while accounting for race, sex, parity, and technical factors, using negative binomial generalized linear models. We identified microRNAs that were differentially expressed (DEmiRs) with BWP at false discovery rate (FDR) less than 0.05 in both cohorts. hsa-miR-532-5p (miR-532) was positively associated with BWP in both cohorts. By integrating parallel whole transcriptome and small RNA sequencing in the RICHS cohort, we identified putative targets of miR-532. These targets are enriched for pathways involved in adipogenesis, adipocytokine signalling, energy metabolism, and hypoxia response, and included Leptin, which we further demonstrated to have a decreasing expression with increasing BWP, particularly in male infants. Overall, we have shown a robust and reproducible association of miR-532 with BWP, which could influence BWP through regulation of adipocytokines Leptin and Adiponectin.


Asunto(s)
Adipoquinas , MicroARNs , Adipoquinas/metabolismo , Cohorte de Nacimiento , Peso al Nacer , Niño , Estudios de Cohortes , Metilación de ADN , Femenino , Humanos , Masculino , MicroARNs/metabolismo , Placenta/metabolismo , Embarazo
17.
Pediatr Res ; 89(7): 1848-1854, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32967004

RESUMEN

BACKGROUND: Preterm birth places infants at higher risk of adverse long-term behavioral and cognitive outcomes. Combining biobehavioral measures and molecular biomarkers may improve tools to predict the risk of long-term developmental delays. METHODS: The Neonatal Neurobehavior and Outcomes in Very Preterm Infants study was conducted at nine neonatal intensive care units between April 2014 and June 2016. Cries were recorded and buccal swabs collected during the neurobehavioral exam. Cry episodes were extracted and analyzed using a computer system and the data were summarized using factor analysis. Genomic DNA was extracted from buccal swabs, quantified using the Qubit Fluorometer, and aliquoted into standardized concentrations. DNA methylation was measured with the Illumina MethylationEPIC BeadArray, and an epigenome-wide association study was performed using cry factors (n = 335). RESULTS: Eighteen CpGs were associated with the cry factors at genome-wide significance (α = 7.08E - 09). Two CpG sites, one intergenic and one linked to gene TCF3 (important for B and T lymphocyte development), were associated with acoustic measures of cry energy. Increased methylation of TCF3 was associated with a lower energy-related cry factor. We also found that pitch (F0) and hyperpitch (F0 > 1 kHz) were associated with DNA methylation variability at 16 CpG sites. CONCLUSIONS: Acoustic cry characteristics are related to variation in DNA methylation in preterm infants. IMPACT: Preterm birth is a major public health problem and its long-term impact on health is not well understood. Cry acoustics, related to prematurity, has been linked to a variety of medical conditions. Biobehavioral measures and molecular biomarkers can improve prediction tools for long-term developmental risks of preterm birth. Variation in epigenetic modulation in preterm infants provides a potential link between preterm birth and unfavorable developmental outcomes.


Asunto(s)
Acústica , Llanto , Epigénesis Genética , Epigenoma , Recien Nacido Prematuro/fisiología , Humanos , Recién Nacido
18.
Clin Epigenetics ; 12(1): 151, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076993

RESUMEN

BACKGROUND: Infants born very preterm are more likely to experience neonatal morbidities compared to their term peers. Variations in DNA methylation (DNAm) associated with these morbidities may yield novel information about the processes impacted by these morbidities. METHODS: This study included 532 infants born < 30 weeks gestation, participating in the Neonatal Neurobehavior and Outcomes in Very Preterm Infants study. We used a neonatal morbidity risk score, which was an additive index of the number of morbidities experienced during the NICU stay, including bronchopulmonary dysplasia (BPD), severe brain injury, serious neonatal infections, and severe retinopathy of prematurity. DNA was collected from buccal cells at discharge from the NICU, and DNAm was measured using the Illumina MethylationEPIC. We tested for differential methylation in association with the neonatal morbidity risk score then tested for differentially methylated regions (DMRs) and overrepresentation of biological pathways. RESULTS: We identified ten differentially methylated CpGs (α Bonferroni-adjusted for 706,278 tests) that were associated with increasing neonatal morbidity risk scores at three intergenic regions and at HPS4, SRRD, FGFR1OP, TNS3, TMEM266, LRRC3B, ZNF780A, and TENM2. These mostly followed dose-response patterns, for 8 CpGs increasing DNAm associated with increased numbers of morbidities, while for 2 CpGs the risk score was associated with decreasing DNAm. BPD was the most substantial contributor to differential methylation. We also identified seven potential DMRs and over-representation of genes involved in Wnt signaling; however, these results were not significant after Bonferroni adjustment for multiple testing. CONCLUSIONS: Neonatal DNAm, within genes involved in fibroblast growth factor activities, cellular invasion and migration, and neuronal signaling and development, are sensitive to the neonatal health complications of prematurity. We hypothesize that these epigenetic features may be representative of an integrated marker of neonatal health and development and are promising candidates to integrate with clinical information for studying developmental impairments in childhood.


Asunto(s)
Metilación de ADN/genética , Epigenómica/métodos , Enfermedades del Prematuro/genética , Recien Nacido Prematuro/metabolismo , Morbilidad/tendencias , Adulto , Lesiones Encefálicas/diagnóstico , Lesiones Encefálicas/genética , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/genética , Islas de CpG/genética , Femenino , Edad Gestacional , Humanos , Recién Nacido , Enfermedades del Prematuro/etnología , Infecciones/diagnóstico , Infecciones/genética , Masculino , Mucosa Bucal/metabolismo , Embarazo , Retinopatía de la Prematuridad/diagnóstico , Retinopatía de la Prematuridad/genética , Factores de Riesgo , Índice de Severidad de la Enfermedad
19.
FASEB J ; 34(8): 10431-10442, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32574425

RESUMEN

Seasonal exposures influence human health and development. The placenta, as a mediator of the maternal and fetal systems and a regulator of development, is an ideal tissue to understand the biological pathways underlying relationships between season of birth and later life health outcomes. Here, we conducted a differential expression (DE) analysis of season of birth in full-term human placental tissue to evaluate whether the placenta may be influenced by seasonal cues. Of the analyzed transcripts, 583 displayed DE between summer and winter births (False Discovery Rate [FDR] q < .05); among these, BHLHE40, MIR210HG, and HILPDA had increased expression among winter births (Bonferroni P < .05). Enrichment analyses of the seasonally variant genes between summer and winter births indicated overrepresentation of transcription factors HIF1A, VDR, and CLOCK, among others, and of GO term pathways related to ribosomal activity and infection. Additionally, a cosinor analysis found rhythmic expression for approximately 11.9% of all 17 664 analyzed placental transcripts. These results suggest that the placenta responds to seasonal cues and add to the growing body of evidence that the placenta acts as a peripheral clock, which may provide a molecular explanation for the extensive associations between season of birth and health outcomes.


Asunto(s)
Relojes Circadianos/genética , Expresión Génica/genética , Parto/genética , Placenta/metabolismo , Adolescente , Adulto , Ritmo Circadiano/genética , Femenino , Feto , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Embarazo , Estaciones del Año , Adulto Joven
20.
Environ Epigenet ; 6(1): dvaa003, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32411397

RESUMEN

Heavy metal exposures, such as cadmium, can have negative effects on infant birth weight (BW)-among other developmental outcomes-with placental dysfunction potentially playing a role in these effects. In this study, we examined how differential placental expression of long non-coding RNAs (lncRNAs) may be associated with cadmium levels in placenta and whether differences in the expression of those lncRNAs were associated with fetal growth. In the Rhode Island Child Health Study, we used data from Illumina HiSeq whole transcriptome RNA sequencing (n = 199) to examine association between lncRNA expression and measures of infant BW as well as placental cadmium concentrations controlled for appropriate covariates. Of the 1191 lncRNAs sequenced, 46 demonstrated associations (q < 0.05) with BW in models controlling for infant sex, maternal age, BMI, maternal education, and smoking during pregnancy. Furthermore, four of these transcripts were associated with placental cadmium concentrations, with MIR22HG and ERVH48-1 demonstrating increases in expression associated with increasing cadmium exposure and elevated odds of small for gestational age birth, while AC114763.2 and LINC02595 demonstrated reduced expression associated with cadmium, but elevated odds of large for gestational age birth with increasing expression. We identified relationships between lncRNA expression with both placental cadmium concentrations and BW. This study provides evidence that disrupted placental expression of lncRNAs may be a part of cadmium's mechanisms of reproductive toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...